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ABSTRACT

Recently, Micchelli, Rivlin and Winograd [ 15] described a scheme
for interpolating by splines at given data points which, in a certain reason-
able sense, is optimal among all schemes which attempt to recover a func-
tion from its values at those data points. This paper offers a Fortran program
for the calculation of that optimal interpolant. A short derivation of that
recovery scheme is given first, in order to make the paper selfcontained and
also to provide an alternative to the original derivation in [15]. For the
latter reason, a derivation of the related envelope construction of Gaffney
and Powell [ 8] is also given. From a computational point of view, these
schemes are special cases of the following computational problem: to
construct an extension with prescribed norm of a linear functional on some

finite dimensional linear subspace to all of ]Ll[ a,b].

AMS (MOS) Subject Classifications: 41A15, 41A05, 41A65, 65D05, 65K05

Key Words: Optimal Recovery, Perfect Splines, Spline Interpolation,
Extension of Linear Functionals, Best Approximation of
Linear Functionals.
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COMPUTATIONAL ASPECTS OF OPTIMAL RECOVERY »

Carl de Boor
Mathematics Research Center, U. Wisconsin-Madison

610 Walnut St., Madison, WI 53706 USA

1. INTRODUCTION

This paper offers a Fortran program for the calculation of
the optimal recovery scheme of Micchelli, Rivlin and Winograd [15].
A short derivation of that recovery scheme is given first, in
order to make the paper selfcontained and also to provide an
alternative to the original derivation in [15]. For the latter
reason, a derivation of the related envelope construction of
Gaffney and Powell (8] is also given. From a computational point
of view, these schemes are special cases of the following computa-
tional problem: to construct an extension with prescribed norm
of a linear functional on some finite dimensional linear subspace
to all of H.I[a,b].

2. THE OPTIMAL RECOVERY SCHEME OF MICCHELLI, RIVLIN AND WINOGRAD

This scheme concerns the recovery of functions from partial

information about them. Let n > k and let 1 := (Ti)? be non-

decreasing, in some interval [a,b], with T, <1 + ®i1 &
(k) (k-1) gy = T (k)

FPor fe L~ :={geC [a,b] : g abs. cont., g

€ IL_}, denote by f . the restriction of f to the data point

sequence T, 1i.e., fIT (= (fi); with

f1 1= f(j)(Ti), j = j(1) := max{m : ™ 11} .

Sponsored by the United States Army under Contract No. DAAG29-75-
C-0024.




(k)

We call amap S : IL (k)

> ScC ( "
H‘w a recovery scheme (on 1 i

)

with respect to t provided Sf depends only on flr’ i.e.,

provided f = g'T implies that Sf = Sg. The (possibly

|t

infinite) constant

consty := sup{|| f - Sfll/l|f(k)l|: £ e l,(k)}

measures the extent to which such a recovery scheme S may fail
to recover some f since it provides the sharp error bound

M) |l £ - sfl| < consty]| f(k)H , @il e m:k)
Here and below,
Il gll := ess.sup{|g(t)| : a <t < b)

A recovery scheme S is optimal if .its constS is as small

as possible, i.e., if the worst possible error is as small as
possible, as measured by (1). We write

const := inf const
f s

for the best possible constant. Here is a quick lower bound for
that constant. We have

S

const, = sup sup | g - s£|l /]| e

: f g‘r=f|T

(k) I

v

sup || g ~ SOl /|l e
g|1=0
- sup max(|| g - 50[, || -& - so[i/ [ g™ |
s, =0

X
(k) ”

2 sup || gll/|l &
8| =0

for every recovery scheme S, hence

@ const, 2 c(0) = sw elflle™ -

slT-O




But, actually, equality holds here. For the proof, we need the
notion of perfect spolines.

A perfect spline s of degree k with (simple) knots

Ly € eee <0 in [a,b] is any function s of the form

r g
1 i+1 k-1
s(x) =P(x) +c }] (=) (x =~ §) - dy | (L.i= a, b .. i= b)
+ 0 r+l
i=0 z
i
with P ¢ IP := polynomials of degree < k and c¢ some constant.

k
In other words, such a function s 1is any k-th anti-derivative
of an absolutely constant function with r sign changes or jumps
in [a,b]. Their connection with the present topic stems from

Proposition 1 (Karlin [10]). If s 1is a perfect spline of
degree k with n - k knots then

(k)

k g k
180 = sae | £®)1: £ em ), ], = 5| 3.

This proposition follows directly from the following lemma.

(k) _ ¢
Lemma 1. If h € n,m is such that, for a = CO sy < §r+1
= b,
o h(k) >0 a.e. on (g z ) for some o, ¢ {-1,1}, i=0 T
1 - . i’ 1+1 i ’ ’ L L ’

and h 2 » 0, then r >n - k. Further, if r < n - k, hence

r = n -k, then

Assuming this lemma for the moment, we see that if, in

k
s> | 8y o

Proposition 1, we had for some f € IL with
f'T = s,r, then h := s - f would satisfy the hypotheses of the
lemma for some r < n - k, which would contradict the conclusion
of the lemma.

Proof of Lemma 1: By Rolle's theorem, there must be points

€y € 5o €

1
at vhich W&V

Catl-k

vanishes, and for which




) T3 2% S T

Then, each interval

all 1 .

[Ci, Ci+1] contains at most one of the tj
h(k-l)

since, on each such interval, is strictly monotone, by
assumption. Therefore, if n denotes the number of such

intervals to which t belongs, then

3
n+l-~-k<1I By <r+1,

or n -k <r. This also shows that, if n - k =r, then n, =1,
all j, and so J

Ly <t < i all 1i (except that, possibly, Lo = t

l’
tn+1-k 7 Cr+1)

which, combined with (4) then implies (3). QED.
We also need

Theorem 1 (Karlin [10]). If f ¢ n,ik), then there exists a

—_—

perfect spline of degree k with < n - k knots which agrees
with f at .

A simple proof can be found in [2].

We are now fully equipped for the attack on the optimal
recovery scheme. By Karlin's theorem, the set

QT := {q : q 1s a perfect spline of degree k with <n ~ k
knots, qlT = 0}

is not empty. By Lemma 1, each q ¢ QT\{O} has, in fact, exactly

n - k knots and does not vanish off 1 (since otherwise it would
have n + 1 zeros yet only n - k sign changes in its k-th
(k)

flt =0 and x ¢ 1,then (f(x)/q(x))q 1is a well defined perfect

spline of degree k with n - k knots which agrees with f at
the n points of T and the additional point x, hence,
Proposition 1 implies that

) 1) > [exrza@ ]l ™.

derivative, contrary to the lemma). Therefore, if f ¢ L and

It follows that




(k)

© suptle /1Y £ e m 8, g =01 = Jaeol/la®)

Since the left side is independent of ¢q, this shows that QT is
the span of just one function, say of q, normalized to have
Ak~
AL (T
It also shows that

M e = |lall

This gives a means of computing c(t), but not quite yet the
equality const_ = c(t) nor the optimal recovery scheme. For this,

let 51,...,5n_k be the n - k knots of a and consider
= splines of order k with simple knots 51""’€n-k
(k-2)
= 1P n C
k, €
(k-2)

= {feC a4} (Eg=a,& b).

I8k e P =
| (Ei,giﬂ) k n+l-k

Theorem 2 (Micchelli, Rivlin & Winograd [15]). The rule

&
(gf)1=fltggc_l_ Secd, sii £on®

(k)

A
defines a map S (read "ess crown(ed)") on L which is

linear and an optimal recovery scheme with respect to T.

Proof. First, we prove that g' is well defined. Since, by
the lemma, Ti < 51 < Ti+k’ we ask

for matching f(k-l)

at some point 7T, only when such 1, ¢ §,
3
s (k-1)

i

i.e., when (ri) makes sense for each s ¢ $. Secondly,

dim $ = k + number of polynomial pieces - 1 = n, therefore S is
well defined if and only if

(8) fit-O and f ¢ § implies f =0 .

For this, we would like to use inequality (5), but, since $ 1is

not contained in n,ik) but only in the larger space

n-k
L&) o g ) T g ()

- R




we must first extend (5) to such spaces, with the convention that

Oy ) 1 ()

f By 5
| g

= max ||f )Ilm for f ¢
i

l(51’51“

This requires the following slight strengthening of Lemma 1.

(k)

Lemma 1'. If h e IL
Ry

If forisome a =L <., < =b
and, for some o ¢ {-1,1},

0 r+l

o(—)ih(k) >0 a.e. on (ci,c T Ll o |

i+l
then h ;= 0 implies n -k < r.

Here, we mean by ™1 (x) = 0 that h® VD Hn® D) <o
in case the number x occurs k-fold in T.

’

Proof. Rolle's theorem gives again n + 1 - k distinct

zeros of h(k_l) - which again consists of r + 1 strictly monotone

pieces, but may fail to be continuous across the points cl,...,cr.

(k)

But, since h alternates in sign, this latter fault can easily
be remedied by appropriate local linear interpolation across

N e

a small neighborhood of each discontinuity g, without disturbing

i
the other two properties and now n - k < r follows as before; Q.E.D.

This gives

Proposition 1'. If s 1s a perfect spline with < n - k
knots, say with knots cl € sun¥ Cr where r < n - k, and of




degree k, then cven

N e tncifl e® 0z £e K f|, =) -

-4 ’
m'r’

From this we conclude, with lld(k)|l= 1, that

(k)

«,E’

But this implies (8) since || f(k)“ =0 for f ¢ §, and so shows
&

that S 1is well defined. Finally, (5') also implies that, for

f e H,ik),

Y 1e% > lem/am| for x {1, fe L £, =0 .

I f(k)ll' | £ - §f)(k)||:_]f(x) - gf(X)l/la(X)l

or

© £ - el < la ]| €™

showing, with (2) and (7), that g is an optimal recovery scheme.

This proves Theorem 2.

MRW actually insist that a recovery scheme S gap into n,ik)

hence they are not quite done at this point, since only maps
o (k=1

into But, since $ can be viewed as spline functions

of degree k with double knots at the Ei’ we can produce an

2

element of arbitrarily close to gf merely by pulling all

these double knots apart ever so slightly. This shows that

inf consts = c(t) even if the inf is restricted to S mapping into

IL(k) but now the inf is not attained apparently for k >-1.

3. THE ENVELOPE CONSTRUCTION

The preceding discussion allows a simple derivation of sharp

(k)

estimates for the value of a function f ¢ IL at some point x,

given the vector f|_ and a bound L on its k-th derivative on
[a,b], as follows.

We are to construct the set
Ix = {f(x) : f € F}

with




F:-{femiw :qt'G.”f&)“iL}

for some given a and L. If F 1s not empty, then Ix is a
closed interval,

Ix =3 [ax‘bx]

say, since F 1is closed, convex and bounded and [x] : f » f(x)
(k)

is a continuous linear functional on IL‘I° . Assume that

FO := {f ¢ F: l]f(k)||< L} =¢ .
Then
preiiey
(10) (ax’bx) s [x]F .
Karlin's theorem then implies that, for x ¢ T,

Qx :t= {q : q 1s perfect spline of degree k with <n-k
knots, qlT =a, q(x) = ax}

is not empty. Further, Qx < F, since, by definition of a,
there exists f ¢ F with f(x) = a while each q € Qx agrees
with such an f at the n+ k + 1 points t 'and x, therefore
llq(k)llj_llf(k)||5_L, by the proposition. On the other hand,
Qx nF° = ¢, since, if q € Qx n Fo, then & q{x) € (ax,bx),
by (10), a contradiction.

It follows that

for all a_ < < b

Y» y_q<y)_ y

But, for any g ¢ F°, h := g -q has < n - k sign changes in its
k-th derivative and vanishes at 1, therefore q has exactly

n - k knots and h does not vanish off t, by Lemma 1. Hence,
if T1+1""’Ti+j are all the points of 1 .between x and y ¢ T,

then

Y@y -qy > 0.

This shows that

a even
q(y) = by if the interval betwecen x and y contains an odd
Yy




number of points of 7t. It follows that Qx contains exactly one

function and that this function supplies half of the entire
boundary of

(11) £Gx,f6x)) ¢ x e [a;bl, £ € B} ,

the other half being supplied by the perfect spline p of degree
k with n-k knots for which p e and p(x) = bx.

We note the curious corollary that the perfect spline s of
Karlin's theorem is unique if there exists g which agrees with

f at all points of T but one and for which || g(k)||< I s(k)ll, i.e.,
if at least one of the interpolation constraints is active. Put
differently, it says that if there are two different perfect

splines s, s of degree k with < n - k knots for which
STT = sIT = a and which agree at some x ¢ 1, then
He® = 18® =1, s= mtnff| e : £ e 2, £| =0},

Let now q be the half of the envelope of (11) with

q(k)(0+) = L, and let p be the one with p(k)(0+) = -L. Gaffney

and Powell [8] choose

SLu = (p + q)/2

as a good interpolant, its graph being clearly the center of (11).
Since p and q are uniquely defined for L > La by the requirement

that they are perfect splines of degree k with n - k knots, equal
to a at 1t and to ax, resp. bx at x, they are necessarily continuous

functions of L and o in that range. In particular, with q =y 40
’

we have qL’a = qu o/L and 9y a7t > 94 o = a as L » », and,

similarly, pL,u/L + -q as L » », This shows that, with
uy % e 8 Uk the knots of q and vy L %ol the knots of p,
ti: u1 = ii: b g Ei’ L = 1seee3n =k .
In particular, for large enough L, the sequence
1

0 = Em’gl_)€1+l'"lgn_k_len_k+)gn_k+l_ o
with

64 = minf{u,,v, }, £, 1= max{u;,v,}




is nondecreasing and

PR, Lo {0 o R sBien.)
L +21. on (Ei-'€i+)

hence

Il (s, < 2Ll u - v”l-——->0 i

Lo

This shows that SLa converges to an element of $, while

SLalT = o forpall s

therefore, SLa converges to the optimal interpolant for the data.
It was in this way that Gaffney and Powell [8] constructed,

quite independently from Micchelli, Rivlin andAWinograd [A57:, the
same optimal recovery or interpolation scheme S.

The problem of constructing the set Ix was posed originally

in the basic paper by Galomb and Weinberger {9], although they
gave detailed attention to such problems only when the (semi)norm
involved comes from an inner product. Micchelli and Miranker ([14]
solved the problem posed at the beginning of this section in the
sense that they correctly described the boundary of (11) as being
given by just two perfect splines of degree k, each with n - k
knots, and with their k-th derivative equal to L in absolute value.
In fact, Micchelli and Miranker consider the slightly more general

situation where f(k) is only known to map [a,b] into some interval
[m,M]. They state that these matters could be proved along the
lines used by Burchard [6] to solve a related restricted moment
problem and refer specifically to Karlin and Studden [11, VIII, 53]
for requisite facts concerning principal representations of interior
points of moment spaces. Of course, these facts go back to

Krein [12]. Quite independently, Gaffney and Powell [8] also

solved this problem, with the proofs in Gaffney's thesis based on
Chebyshev type inequalities as found in Karlin and Studden [11,
VIII, 58] and adapted by him to weak Chebyshev systems.

4. THE CONSTRUCTION OF NORM PRESERVING EXTENSIONS TO ALL OF H,l

. ]
Both the optimal recovery scheme S of Section 2 and the
envelope of Section 3 require the construction of an absolutely
constant function h with no more than a specified number of jumps

_lj)_




which providces an integral representation of a linear functional
given on a lincar space of spline functions.

In the optimal recovery, we are to construct a perfect spline
s of degree k with n - k knots and with Ilé(k)l|- 1 which vanishes

at the given n-point sequence 1. Let (M be the sequence of

n
1)1
B-splines of order k with knot sequence T, each normalized to have
unit integral, i.e.,

k-1

(12) Mi(x) = M (x) := k[ri,...,ri+k] (- - x)+ .

) ] g e

with ]£f the k-th divided difference of the function

[11""’Ti+k

f at the points TyreeesT Then, from Taylor's expansion with

i+k’
integral remainder,

(k)

T
Pegoe o s { i+kﬁi’k’t(x)f(k)(x)dx/k! for a1l f'e L
3 |

The points § = (C:l)l;-k are therefore characterized by the require-
ment that the function

n-k k)
h_(x) := sign | ] (x - E£,) = #s (x)
¢ C =1 x

be orthogonal to each of the n - k functions Ml""’Mn-k'
Before considering the computational details of determining

€ from this orthogonality condition, I want to comment on the

fact that this is a problem of representing or extending a‘ linear

functional on some subspace of H,l and is therefore closely related

to the problem of computing the norm of a linear functional on some
subspace of ILl. This is also explored in a forthcoming paper by
Micchelli [13].

Indeed, if T is a linear subspace of IL, of dimension
n+1-%k, and A is a linear functional on T, we might ask for ¢§
and o so that

(13) a f h,g = \g for all ge T.

€

But then, in particular, h,_ is orthogonal to ker A, a subspace of

€
dimension n - k. Conversely, if we have already found h;y ortho-
gonal to ker A then there will be exactly one a so that nﬁz




T

represents A on T in the sense of (13), unless h, 1is even ortho-

€
gonal to all of T. But this latter event cannot happen in case T

is weak Chebyshev since hE has only n - k jumps.

It is clear that any such representation h_ for A produces

an upper bound for the norm of A. In fact, || A|] = |a] in case T
is weak Chebyshev. This is actually how I became interested two
years ago in the numerical construction of representers of linear
functionals [3], [4]. I was interested in computing, or at least
closely estimating, the norm of certain linear functionals on
certain spline subspaces in ILl. In a way, this is a trivial

problem, viz. the maximization of a linear function over a finite
dimensional compact convex set, and there was the feeling that
there ought to be special methods available. Perhaps some reader
can steer me towards such methods. I found, for the particular
cases of concern to me in which T was always weak Chebyshev,
nothing more effective for calculating || || than to comstruct
such a representation (13).

Finally, the envelope construction corresponds to the slightly
different situation where dim T = n - k, X € T' and a with
|a] > || A|| s prescribed and one seeks £ so that again (13) holds.
We have now one less condition to satisfy but also one less para-
meter to do it with.

5. CONSTRUCTION OF THE KNOTS FOR THE OPTIMAL RECOVERY SCHEME

As we saw in the preceding section, the knots £ = (Ei)?-k

for the optimal recovery scheme are the solution to the following
n
problem. We are given (ti)1 nondecreasing, with T < T4k’ all {1,

and n > k, and wish to construct 50 Sl & Er with

r:=n-k+1
and with 50 = g = 11,.£t = b = 1n 80 that_

1 53

) J g, [ M, =0, 1=1,...,n-k

y=1 3 E i,k

j-1

wvhile also

(15) Bj + Bj+1 =0, j=1,...,n -k .

-12-




Extend 1t by

x
f Mi,k = Z Nm,k+l(x) for x > a
a >
with
T -1
_mtk+l m
BT AN S T L i el

Therefore, (14) is equivalent to

r
jzl 8, mgi(um,k+l<zj> - Nkt Gy =0 1=l -k,

or, on subtracting equation i from equation i

1l for 1 = 2,...,n-k,

E

521 By ja1 () = Ny By ) =0t =1eom-k -1

r

5B b T € " Mo G0 = 0
Using the fact that N (¢,) =0 for m > 1, this can also be
written m,k+1 70

n-k

j£1 (s = Bua W g (eg) = 08y g Bp)s 2= Lices8 k2 D

5 3 )

(B, < B.i:) N (£,) = -8B N (Ex) v
=1 j j+1 m>n-k m,k+1 "] r m>n-k m,k+1"°r
Since Ni'k+1(gr) =0 for { < n - k, while >£—k Nm’k+1(gr) -1,

the right side becomes simply (0,...,0,—8rT7

Choose now B = -1 to make things definite. Then Bj = (_)r—j—l

= (_)n-k-j by (15), and (19) and (15) are seen to be equivalent to

(16) F(g) = 0

n-k

with F : R +* Rn-k given by




(17) F([,)i H

where

—
|

(18) ai S Z (-) i,k+1(r'j)‘ - l....,n -1

-1/2 . BN
We solve (16) by Newton's method. From the current guess £, we

compute a new guess E* = £ + §¢, with 8 the solution to the
linear system

(19) F'(X)6E = -WH(E) .

' = -
oneat B Gl TGS VT

i-1, i = n - k,...,2, in (19) produces the equivalent linear system

, addition of equation i to equation

n-k n-1 a-k-4 E
™M . -M JLCE D= (=) 8¢, = - a , i=1,...,n-k.
3=1 m=1i m,k ~mtl,k i j i &
n-1
- = - = M

But, since E (Mm'k Mo, () = My (6 Mn'k(t) Ji’k(t)
for t < b, this shows that (19) is equivalent to the linear system
(20) cx = d
with

n-k-j i t !
Q1) ()7 C85y = xyy el ] cadri - Tk, e 0 N L (5)

m=1

I R e, R
The matrix C is totally positive and (2k - 1)-banded, hence can be
stored in 2k - 1 bands of length n - k each, and can be factored
cheaply and reliably within these bands by Gauss elimination with-
out pivoting (see [5]).

The iteration is carried out in the program SPLOPT below,
starting with the initial guess

(22) 51 = (t1+1 ¥ oews ¥ ri+k_1)/(k a 1)y 4 = 1o =k

-ji-




A first version of the program was equipped to carry out Modified
Newton iteration: g* is computed as the first vector in the
sequence

£ + 2’h5g, how Y. 2. 00,

for which || F(§ + 2'“55)).2 < ]]F(g)]lz. But, in all examples

tried, the initial guess (22) was apparently sufficiently close to
the solution to have always h = 0, i.e., ||F(5 + 66)”2 < HF(E){IZ.
In fact, the termination criterion

Il eell, < 1078, - 1))/ - 1)

was usually reached in three or four clearly quadratically converg-
ing iterations. For this reason, the program SPLOPT below carries
out simple Newton iteration. It would be nice to prove that Newton
iteration, starting from (22), necessarily converges. But, such a
proof would necessarily have to be in control of the norm of the
inverse of the matrix F'(£), hence in control of the norm of the
inverse.of C = (Ni(sj)) as a function of £. Good estimates for

Il (Ni(zj

interested in bounding (the error in) spline interpolation, but
without much success. E.g., the simple conjecture that, for the

initial guess (22), || (Ni(gj))-ll]1 < const

been proved so far only for k < 4.

))—llf have been searched for in the past by some who were

K independent of £ has

SUBROUTINE SFLOFT ( TAUs Ny Ky SCRTCHs T» IFLAG )
COMPUTES THE KNOTS T FOR THE OFTIMAL RECOVERY SCHEME OF OR[DER KN
C FOR DATA AT TAU (I)sI=1ssee9» N . TAU HNUST RE STRICTLY INCREASING.
C SEE TEXT FOR DEFINITION OF VARIAEBLES ANDI' METHOD USED.
c IFLAG = 1 OR 2 DEFENDNING ON WHETHER OR NOT T WAS COMSTRUCTED.
Cc DIMENSION SCRTCHCO(N~K)X(2¥K+3)+SkK+3)» TIN4K)
DIMENSION TAU(N)»SCRICH(1),T(1)
DATA NEWTHX»TOLRTE 7 10,.000001/
NMK = N-K
IF (NMK) 195692
1 PRINT 401/Ns/K
601 FORMAT(13H ARGUMENT N =»J4,29H IN SFLOFT IS LESS THAN K =,13)
GO T0 999
2 IF (K .GT. 2) GO TO0 3
PRINT 402/K
602 FORMAT(13H ARGUMENT K =,I3y27H IN SFLOFT IS LESS THAN 3)
GO T0 999
3 NMKM1 = NMK - 1
FLOATK = K
KPR = K+K
KF1 = K+1
KPKP1 = K+KP1
KM1 = K-1
KPKM1 = K+KM1
KPN = K¢N
SIGNST = -1,
IF (NMK .GT. (NMK/2)%2) SIGNST = 1,




C SCRTCH(Y) = TAU-IXTENDEDC(IYy I=1,,.,9sNE+N4N
NX = NtNFHF1

C SCRTCHCI+NX) = XI(1)sI=0reserN-K+$1
NA = NX 4 NMN + |

C SCRTCHCIANA)Y = =A(I)s I=1r4409N
NI = NA ¢+ N

C SCRTCHC(I4AND) = X(I) OR DCI)y I=1ve+.rN-K

NV = NI 4+ NMKN

C SCRTCH(I4HNV) = UNIRNX(I)sI=19e4s9K41
NC = NV + NF1

C SCRTCHC(J=1)%(N-hNs+I + NC) = CHAT(IsJ)sI=19e0 s N-KrJ=19s4.92%K-1
LENGCH = NMANYRNFRAML

C EXTENDI TAU TO A KNNOT SEQUENCE AND' STORE IN SCRTCH.

no S J=1,N
SCRTCH() = TAUCL)
S SCRTICH(NFN+I) = TAU(N)
DO & J=1N
é SCRTCH(NY) = TAUY)
C FIRST GUESS FOR SCRTCH (.+NX) = XI ,

SCRTCH(NX) = TAU(1)
SCRTCH(NMK+14NX) = TAU(N)
DO 10 J=1,yNMK

SUM = 0.
PO 9 L=1,KM1
9 SUM = SUM + TAUCJ+L)
10 SCRTCHCJENX) = SUM/KM1
C LAST ENTRY OF SCRTCH (.+NA) = - A IS ALWAYS ...

SCRTCH(N+NA) = .S
C START NCUTON ITERATION,
NEWTON = 1
TOL = TOLRTEX(TAU(N) - TAU(1))/NMN
C START NEWTON STEF .
COMFUTE THE 2KN-1 FANDS GF THE MATRIX € AND STORE IN SCRTCH(.4NC)»
C AND COMPUTE THE VECTOR SCRTCH(.4NA) = -A.
20 00O 21 I=1+LENGCH
21 SCRTCH(I+NC) = 0.
Do 22 I=2sN
2z SCRTCH(I-1+N2) = 0.
SIGN = SIGNST
ILEFT = NF1
DO 28 J=1,NMK
X1J = SCRTYCH(J+NX)

23 IF (XIJ .LT. SCRTCH(ILEFT+1)) GO TO 25
ILEFT = ILEFT + 1
IF C(ILEFT .LT. KFN) GO TO 23

ILEFTY = ILEFT = 1
25 CALL BSPLUN(SCRTCHsKs»1,XIJyILEFTsSCRTCHC(14NV))
ID = MAXO(Oy ILEFT-KFK)
INDEX = NC+(J-ID+RM1) KNMK+ID
LLMAX = MINOCKyNMK-II1)
LLMIN = 1 - MINO(OsILEFT-KFK)
DO 26 LL=LLMIN,LLMAX
INDEX = INDEX = NMKM1
26 SCRTCHCINDEXY = SCRTCH(LL#N'")
CALL BSPLUN(SCRTCHYKF1,2yXIJs ILEFTy»SCRTCH(14NV))
ID = MAXO(OsILEFT-NFKF1)
LLMIN = 1 - MINO(O,»ILEFT-KFKF1)
PO 27 LL=LLMIN/KP1
ID = IDh 4 1
27 SCRTCH(ID4NA) = SCRTCH(ID#NA) - SIGN#SCRTCH(LLANV)
28 SIGM = -SICN
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Call. EANFAC{SCRTCH(L4NC) s NMA s NMi s RFR11 K9 TFLAG)
GO TO (45+44),IFLAG
44 FRIND 644
644 FORMAT(SOH € IN SPLOFT IS NOT INVERTIELE)

RETURN
COMFUIE SCRTYCH (.4NT1) = D FRKOM SCRTCH (.4NA) = - A .
45 D0 44 1:-N+Dy-1
A6 SCRYICH(I=-14MA) = SCRTCH(I~14NA) + SCRTCH(I+NA)
DO 49 I:=1,NML
49 SCRICH(T 4NN = SCRTICHC(TI+HNAIX(TAUCI4K)-TAU(I) ) /FLOATK
COMFUTY,  SCPTTH (L.4NID = X

CAlL PANSUF(SCKRTCH(14NC) yNMNyNMKyKFKML,KySCRTCH(I14ND))
COMPUTE  SCRTCH (.4NIt) = CHANGE IN X1 . MODIFY, IF NECESSALRY, TO
C FREVTNT NEW XI  FROM MOVING MORE THAN 1/3 OF THE WAY TO ITS
C NEIGHEOKRS, THEN ADD TO XI 7O OBTAIN NEW XI  IN SCRTCHC.4NX).

LELMAX = 0.

SIGN = SIGNST

[0 S3 I=1+0MN "

DEL = SIGN¥SCRTCH(I4NID
DELMAX = AMAXI(TIELMAXsARS(DELY)

IF (DEL .GT. 0.) GO TO S1
DEL = AMAXI(IELy (SCRTCH(I-14NX)~SCRTCH(I+NX))/3.)
GO T0 S2
51 DELL = AMINIC(DEL» (SCRTCH(I+14NX)~SCRTCH(I4NX))/3.)
S2 SIGM = =-SIGN
53 SCRYCH(T4NX) = SCRTCH(TI4NX) + DEL

CALL IT A DAY IN CASE CHANGE 1IN XI WAS SMALL ENOUGH OR TOO MANY
C STEFS WERFE TAKNEN.

IF (DELMAX .LT. TOL) GO T0 S4
NEWTON = NEWTON + 1
IF (NEUTON .LE. NEWTMX) GO 10 20

FRINT 6539NEWTMYX

&532 FCRMAT (334 ND CONVERGENCE IN SFLOFT AFTER.I3»14H NEWTON STEFS.)
U4 10 L5 I-1,NMN
55 T(h+]1) = SCRTCHUI4NX)
S6 Dt 57 1=1,KN
T(I) = TAUC(L)
57 T(N1T) = TAUCN)
RETURN
@99 IFLAG = 2
RETURN

END




The subroutine SPLOPT has input TAU(1) = T

i L T L
assumed to be nondecreasing and to satisfy Ii < Ti+k' all i, the

integer N = n and the desired order k in K. The routine neceds a
work array SCRTCH, of size > (n - k) (2k + 3) + 5k + 3; n(2k + 3)
is more than enough. The routine has output T(i) = t»

i=1,...,n + k, the knot sequence for the optimal recovery scheme,
in case IFLAG = 1. For IFLAG = 2, something went wrong.

The routine uses the subroutine BSPLVN for the evaluation of
all B-splines of a given order on a given knot sequence which do
not vanish at a given point. This routine, and others for dealing
computationally with splines and B-splines, can be found in [1].
For completeness, we also list here the subroutines BANFAC and
BANSUB, used in SPLOPT for the solution of the banded system (20).

SUERQUTINE EANFAC ( Ay NROWs Ns NOIAGy MIDDLE, IFLAG )
DIMENSION A(NRNWNDIAG)

IFLAG = 1
ILO = MIDDLE - 1
IF (ILO) e 999910519
10 10 11 I=1,N
IF (A(I»1)) 11,999,11
11 CONTINUE
RETURN
19 IHI = NDIAG - MIDDLE
IF (IHI) 999220929
20 [0 25 I=1,N
IF (ACT»MIDDLE)) 21,999,21
21 JMAX = MINO(CILO»N-I)
IF (JMAX) 25925922
22 D0 23 J=1yJMAX
23 ACI+JyMIDDLE-J) = A(I+JoMIDDLE-J)/ACIsMIDDLE)
25 CONTINUC
RETURN
29 DO S0 I=1,N
nIAG = ACIYMIDOLE)
IF (DIAG) 31,999, 31
31 JMAX = MINOCILO/N-I)
IF (JMAX) 50¢50,32
32 NMAX = MINOCIHI,N-I)
N0 33 J=1,.JMAX
IPJ = I4)

MMJ = MIDDLE-J
ACIFJYMM)) = ACIFJIMMI) /DIAG
DO 33 K=1,AMAX i
33 ACIFPJIMMIIK) = ACIFJyMMJIEN) = ACIPJyMMU) XACT MIDDLE4N)
S0 CONTINUE
RETURN
999 IFLAG = 2
RETURN
END.
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BANFAC factors an N x N band matrix C whose NDIAG bands are con-
tained in the columns of the NROW * NDIAG array A, with the MIDDLE
column containing the main diagonal of C. It uses Gauss elimina-
tion without pivoting and stores the factors in A.

SURROUTINE BANSUE ( Ay NROWs Ny NOIAG, MIDDLE, FR )
DNIMENSION ACNROWSNDIAG) s EB(N)

IF (N .EQ. 1) GO 70 21
ILO = MIDDLE - 1
IF (ILO) 21,21,11
11 1O 19 I=2:N
JMAX = MINO(I-1,IL.0)
DO 19 J=1,JMAX
19 BC(I) = B(I) - R(I-J)XA(I,MIDDLE-J)
C
21 I =N

IH™ = NDIAG-MIDDLE
DO 29 II=1yN
JMAX = MINO(N-I»IHI)
IF (JMAX) 28,28, 22

22 [0 25 J=1,JMAX

25 R(I) = B(I) - R(I+J)XA(I,MIDDLE+J)
28 B(I) = R(I)/A(IyMIDOLE)

29 = 1 = 1

END

BANSUB then uses the factorization of C into the product of a
lower and an upper triangular matrix computed in BANFAC to solve
the equation Cx = b for given b (input in B) by forward and back
substitution. The solution x is contained in B, on output.

6. CONSTRUCTION OF THE OPTIMAL INTERPOLANT

With the break points &1 € sine for the optimal inter-

- En-k
polant gf determined from t in SPLOPT, it remains to compute gf.
This we propose to do by determining its B-spline coefficients.

SPLOPT has produced the knot sequence g o= (t1)2+k, with

By ® v 8 §

1 il

Tt O PPRLE AP T TOU TR N

- =
tn+1 s B ;O

Let (N1)I be the corresponding sequence of normalized B-splines
of order k, i.e.,

NG 5= Ny L G e (:i+k-c1)[:1,...,:1+k1(.-x):‘1, sll t.
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Then, according to Curry & Schoenberg (7], every piecewise poly-
nomial function of order k on [a,b] := [rl,rn], with k - 2

cont inuous derivatives and break points &l,.. i.e., every

. !Cn_k’
spline of order k on [a,b] with knot sequence t, has a unique
representation as a linear combination of the n functions
N,,...,N . Therefore
1 n
¥ 1
Sf = 3 aN,
i=1

with a = (ai)? the solution of the linear system

n
(23) ) N

i j(Ti)aj = f(ri), p ot 1Lt T B

In case 1 is strictly increasing, - the only case considered here, -
Lemma 1 implies that t, < 1, < t itk all i, which, together with

i i
the fact that Nj vanishes outside the interval [tj'tj+k]’ all j,
shows that the coefficient matrix of (23) is 2k - 1 banded. Since
the coefficient matrix is also totally positive, we can therefore
(see [5]) solve (23) by Gauss elimination without pivoting and
within the 2k - 1 bands required for the storage of the nonzero
entries of the matrix. 'The following subroutine SPLINT generates
the linear system (23), given on input the arrays TAU(i) = t,,
FTAU(1) = f(1,), 1 = 1,...,N, T(d) = t,, 1 =1,...,N + K and the

numbers N and K. The system is then solved, using BANFAC and
BANSUB given in Section 5, and using a working array Q, of size
N(2K - 1). The output consists of the B-coefficients

a, = BCOEF(i), i = 1,...,N, in case IFLAG = 1. If IFLAG = 2, then

the linear system (23) was not invertible.
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SULKOUTINE SELINT ¢ TAU» FTAU» Tr Ne Ky Qs RCOEFs IFLAG )
SFLINMY  FRODUCES THE L-SPLINE COEFF.S KCOEF  OF THE SFLINE OF ORICK
K WITH KNOTS T (I)s I=1s.ess N 4+ K » WHICH TARES ON THE VALUE
FTAU (I) AT TAU €I)» I=treesr N .

TAU IS ASSUMED TO EE STRICTLY INCREASING.
SEE TFXT FOR NESCRIFTION OF VARIAELES AND METHOD.
DIMENSION T(NtRN) »Q(Ny2¥KN-1)

DIMENSTION TAUCN)s FTAUCN) s TC1)y Q(Ns1)» ECOEF(N)

NF1l = N + 1

KFANM1 = 2%K - 1

ILEFT = K

o 30 I=1,

TAUI = TAUCI)

ILFIMX = MINOCI4K,NF1)
DO 13 J=1+KFKM1
13 QcI.J) = 0.
ILEFT = MAXOCILEFT,»I)
IF (TAUI .LT. TCILEFT)) GO TO 998
15 IF (TAUI .LT. TC(ILEFT+1)) GO TO 16
ILEFT = ILEFT + 1 ‘
IF C(ILEFT JLT. ILFIMX) GO TO 15
ILEFT = ILEFT - 1 y
IF ¢(TAUI .GT. TCILEFT+1)) GO TO 998
16 CALL EBSFLUN ¢ Ty Ky 1, TAUI» ILEFT, RCOEF )
c NOTE THAT BCOEF 1S USED HERE FOR TEMF.STORAGE.
L = ILEFT - I
N0 30 J=1+K
L = L+t
30 Q(I,L) = BCOEF(J)
NF2MK = N+2-K
CALL BANFAC ( Qs N» N» KFKM1» Ks» IFLAG )
GO TO (40,999), IFLAG

OO n

} - 2

40 N[O 41 I=1,N
41 ECOEF(I)
CALL BANSUE

"

FTAUCI)
Qr N+ Ns KFKM1, K» BCOEF )
RETURN

-~

998 IFLAG = 2
999 FRINT 499
699 FORMAT(41H LINEAR SYSTEM IN SFLINT NOT INVERTIELE)
RETURN
END

Note that [1] contains programs w hch might facilitate sub-
sequent use of the optimal interpolant determined in this way
via SPLOPT and SPLINT.

Finally, the linear system (23) can be generated in 0(nk2)
operations and, because of the band structure, can be solved in
0(nk) operations. The linear system (20), to be generated and
solved at each Newton step for finding £, is of similar nature
(with n - k rather than n equations and a coefficient matrix which
is the transposed of the kind of matrix appearing in (23)) hence
requires a similar effort for its construction and solution.
Therefore, if it takes indeed only three to four Newton iterations

2l




to find ¢ to sufficient accuracy, then it takes only four to five
times as much work to construct the optimal interpolant rather
than any spline interpolant to the same data. Also, the total
effort is only O(nkz) which, for large n, compares very favorably
with such interpolation schemes as polynomial interpolation which
takes O(nz) operations, or more general schemes which take as
much as 0(n3) operations.
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